

Status of the Vapor In-cloud Profiling Radar (VIPR)

A New Method to Remotely Sense Water Vapor Within Clouds

Matt Lebsock

Contributors: Ken Cooper, Luis Millán, Raquel Monje, Jose Siles, Ricky Roy, Forest Cannon

What is it?

- (VIPR) Vapor In-cloud Profiling Radar
- (DAR) Differential Absorption Radar
 - Microwave analogue of DIAL
- A concept to profile water vapor within the cloudy/precipitating atmosphere.
 - Complements existing water vapor observations
 - Addresses needs of the PBL incubation area of the Decadal Survey
- CWV measurements :
 - High spatial resolution
 - All surface types
 - Most storm conditions

VIPR (Vapor In-cloud Profiling Radar)

- Currently funded by NASA IIP-16
- Airborne demonstration instrument
- Target: boundary layer water vapor and column vapor
- Humidity uncertainty (<20%)
- Detection sensitivity (-30 dBZ @ 2 km)
- Entry TRL = 3, Exit TRL = 6 (2020)
- 0.5 W solid-state FMCW DAR
- 60 cm primary antenna
- Tunable bandwidth [167.1-174.7] GHz

Airborne VIPR Development

The VIPR system is mounted on Flotron rotation stage with the beam pointing upward. It uses a 60 cm diameter (58 dB gain) aperture.

Measurement Principle

Differential reflectivity from cloud/rain/surface is proportional to the gas density

$$\Delta Z \equiv dBZ(v_1, r) - dBZ(v_2, r) \propto u_{gas} = \int_{0}^{r} \rho_{gas} dr$$

- Assumption #1: Unattenuated reflectivity is spectrally invariant (or variation is known)
- Assumption #2: Differential attenuation by liquid may be neglected (or variation is known)
- Key Benefits: Radar: provides range resolution / differential technique is self-calibration

Range-resolved water vapor profile retrieval

- Measurement quantity is differential attenuation per unit distance (a double difference)
 - Difference in range
 - Difference in frequency
- All instrument and range dependent terms cancel!
 Self calibrating technique

VIPR 'first light'

Observed Power 'Offline'

- First continuous curtain observations from VIPR
- High gain antenna allows detection out to 10 km
- Independent humidity retrievals show good agreement

Derived humidity profile

Recent Validation Activities

- Scripps validation deployment (12/5/2018)
- VIPR Observed 6 hours of a cold-frontal passage
- Scripps CW3E Launched 8 radiosondes

Initial Validation Results #1

Initial Validation Results #2

RMSE(VIPR - sonde 1) = 0.59 gm^{-3} RMSE(VIPR - sonde 2) = 0.66 gm^{-3} RMSE(sonde 1 - sonde 2) = 0.31 gm^{-3}

Initial Validation Results #3

RMSE(sonde 1848) = **0.70** gm⁻³ RMSE(sonde 1915) = **0.75** gm⁻³ RMSE(sonde 1 - sonde 2) = **0.31** gm⁻³

Avg. bias(VIPR - sonde 1) = -0.45 gm⁻³ Avg. bias(VIPR - sonde 2) = -0.44 gm⁻³

Correcting for liquid attenuation (assuming Rayleigh) causes overcorrection

Suspicious Results

- Suspiciously large (40% increase) streaks of humidity are relatively common.
- Are they real?
- They tend to 'fall' down toward the radar.

Suspicious Results

- Gradients in the reflectivity associated with negative humidity!
- Clearly unphysical result seen more often than we would like.

What can cause bias?

Differential mass extinction coefficient $\approx 0.3 \text{ dB/km/(g/m}^3)$

Differential Liquid Attenuation

Cloud water (500 gm⁻³)

- Cloud water (Rayleigh) is fairly large
- Drizzle (~50 micron) very large
- Rain is very small

Differential Liquid Scattering

- Assume cloud at Range 2
- Precipitation at Range 1
- Range 200 m

 Extreme scenario yields extreme biases

Next Steps

- Demonstration/Validatation
 - Ground-based deployment to the ARM-SGP super-site (March 2019)
 - Airborne demonstration flights (October 2019)
- Continued investigation of hydrometeor scattering/absorption effects
- Algorithm and data processing improvements
- My Perspective:
 - PBL (thermodyanics) was called out for incubation activities over the coming decade
 - There is a need for coordinated airborne demonstration/validation with other PBL sensing instruments (e.g. lidar and passive sounders and dropsondes)